1 INTRODUCTION 3
2 AIM OF THE EXAM 4
3 STRUCTURE AND ASSESSMENT 5
3.1 Exam format 5
3.2 Test questions types and marking 5
3.3 Criteria for conversion of percentage points into a descriptive mark 6
4 CONTENT AND OBJECTIVES 7
4.1 Basic concepts of logic 7
4.2 Sets 7
4.3 Number sets 7
4.4 Algebraic expressions, equations and inequalities 9
4.5 Powers and roots 10
4.6 Geometry in the plane and in space 11
4.7 Geometric shapes and solids 11
4.8 Vectors in the plane and in space 12
4.9 Cartesian coordinate system in the plane 12
4.10 Functions 13
4.11 Conic sections 17
4.12 Sequences and series 17
4.13 Differential calculus 18
4.14 Integral calculus 19
4.15 Combinatorics 19
4.16 Probability 20
4.17 Statistics 20
5 REFERENCE MATERIALS 22
6 APPENDIX 23
6.1 Mathematical symbols 23
6.2 Formulas from the Formula Sheet 27

The Examination Guide for Persons with International Protection - MATHEMATICS (hereinafter referred to as the Guide) defines the Mathematics exam as required by the Decree on the methods and conditions for ensuring the rights of persons with international protection. The aim of the Guide is to help candidates prepare for the assessment of Mathematics required for enrolment in tertiary education.

Candidates taking the Mathematics exam have to prove that they are capable of achieving the exam objectives as defined by this Guide.

The Guide is based on the Mathematics syllabus* and the Subject Examination Guide for the General Matura Examination - Mathematics for 2021. The contents and the objectives of the exam correspond to Mathematics at Basic Level in upper secondary education.

[^0]In the Mathematics exam, candidates are expected to demonstrate that they can:

- read mathematical texts and correctly interpret them;
- clearly present mathematical contents in text, table, graph or diagram format;
- compute with numbers, evaluate and calculate the result with precision, as well as judge the result's validity;
- use the adequate method for calculating;
- apply information and communication technology (ICT) in solving mathematical problems;
- use the geometry set for drawing;
- interpret, reformulate and properly use mathematical statements, expressed either in words or in symbols;
- recognise and apply relationships between geometric objects (in the plane and in space);
- come to logical conclusions from given mathematical data;
- recognise patterns and structures in different situations;
- analyse a problem and choose the correct manner of solving it;
- notice and make use of the connections of different branches (areas) of mathematics;
- apply a combination of several mathematical skills and techniques in solving problems;
- present mathematical work in a logical and clear manner, using adequate symbols and terminology;
- apply mathematical knowledge in real-life situations;
- use mathematics as a means of communication with the emphasis on precise formulations.

3 STRUCTURE AND ASSESSMENT

3.1 Exam format

Question Paper	Time allowed	Weight	Assessment	Items allowed and required tools	Appendix
1	90 minutes	50%	External	A fountain pen or a ballpoint pen, a pencil, an eraser and a geometry set ${ }^{+}$	The Formula Sheet
2	90 minutes	50%	External	A fountain pen or a ballpoint pen, a pencil, an eraser, a calculator* and a geometry set ${ }^{+}$	The Formula Sheet
Total	$\mathbf{1 8 0}$ minutes	$\mathbf{1 0 0 \%}$			

Question Paper 1 is followed by a 30 -minute break.

3.2 Test questions types and marking

3.2.1 Test questions types

Question Paper		Type of task	No. of tasks	Marking
1		A Short tasks	8	Up to 3 points for each correct answer total 20 points
	B	Short structured tasks	6	5 to 8 points for each correct answer total 40 points
				Total 60 points
2		A Short tasks	8	Up to 3 points for each correct answer total 20 points
	B	Short structured tasks	6	5 to 8 points for each correct answer total 40 points
				Total 60 points
Total				120 points

[^1]
3.2.2 Taxonomy Levels

Taxonomy Levels	Question Papers 1 and 2
I. knowledge	Min 30%
II. comprehension and application	$40-60 \%$
III. comprehension and application, solution of new problems	Max 30%
Total	$\mathbf{1 0 0} \%$

3.2.3 Criteria for assessment

Tasks are assessed in accordance with the Mark Scheme. Points are awarded for individual steps in the procedure that can be from different levels of taxonomy. In solving the tasks, the path to the result with all interim calculations and conclusions must be clearly and correctly presented. In mathematical constructions, candidates are required to use the geometry set.

3.3 Criteria for conversion of percentage points into a descriptive mark

The exam is marked by the Subject Committee for Mathematics in absolute and in percentage points. The points are then converted by the Subject Committee for Mathematics into a descriptive mark: either 'Pass' or 'Fail'. Candidates pass the exam if they meet the criteria for 'Pass' in Mathematics in the General Matura Examination in the preceding calendar year.

4 CONTENT AND OBJECTIVES

4.1 Basic concepts of logic

Content	Objectives
	Candidates
Statements and relations between them	$-\quad$ write a statement,
Compound statements	$-\quad$ determine the truth-value of a statement,
Order of operations	$-\quad$ write a compound statement using symbols,
Tautology	$-\quad$ determine the truth-value of a compound
Equivalent statements	
	statement for all values of equivalent

4.2 Sets

Content Objectives

Candidates

Basic concepts: element, set, set membership, subset, empty set, universal set

Symbolic representations
Venn diagram
Intersection, union, difference, complement of sets
Power sets
Cartesian product of sets
Cardinality of a set

- are familiar with basic concepts and mark relations between elements and sets using symbols,
- use different methods for representations of sets,
- compute with sets,
- find the power set of a finite set,
- draw the graph of a Cartesian product of two sets,
- use formulas for the power of a union of two or three sets as well as the power of the Cartesian product of finite sets.

4.3 Number sets

Content
Objectives

4.3.1 Positive integers and integers

Mathematical operations and their properties

Prime numbers and composite numbers
Decimal notation
Criteria of divisibility by $2,3,4,5,6,8,9$ and 10

Candidates

- are familiar with the significance of positive integers and the reasons for the introduction of integers as well as examples of their use,
- use mathematical operations in the set of positive integers and the set of integers, and can provide examples illustrating their properties,

Divisibility relation
The greatest common divisor and the least common multiple

Euclidean division theorem
Decimal positional numeral system

- present positive integers and integers on a number line,
- use decimal notation of whole numbers,
- justify and use the basic criteria of divisibility,
- are familiar with the properties of the divisibility relation and are able to apply them,
- determine the greatest common divisor and the least common multiple of two or more integers,
- use the Euclidean division theorem of integers;

4.3.2 Rational numbers

Mathematical operations and their properties
Decimal notation of rational numbers
Proportions and percentage
Percentage calculus

- are familiar with the reasons for the introduction of rational numbers and are able to justify them,
- present rational numbers on a number line,
- calculate with rational numbers,
- use and explain a decimal notation of a rational number and distinguish between decimal and non-decimal fractions,
- calculate with decimal numbers,
- use proportions and percent as well as percentage calculus in tasks related to everyday life and are adept at using a calculator;

4.3.3 Real numbers

Irrational numbers
Real numbers on the number line Intervals

Finite decimal approximations
Absolute value of a real number and its properties

Absolute value equations
Absolute and relative error

- are familiar with the reasons for the introduction of real numbers and are able to justify them,
- provide some examples of irrational numbers,
- construct square roots as examples of irrational numbers using the Pythagorean theorem,
- interpret the number line as a real axis,
- round decimal numbers,
- link geometric and analytical interpretations of the absolute value of real numbers,
- simplify expressions with absolute value and solve simple equations,
- compare the significance of absolute and relative errors and estimate absolute and relative errors of a sum, a difference, a product and a quotient of two data;

4.3.4 Complex numbers

Geometric representation of complex numbers in the plane

Mathematical operations and their properties

Solving equations with real coefficients

- are familiar with the reasons for the introduction of complex numbers and are able to justify them,
- present a complex number in the complex plane,
- use analytical and graphical methods to add and subtract complex numbers,
- multiply complex numbers,
- derive a rule for commuting powers of i,
- find links between the analytical and geometric meaning of a complex conjugate,
- find links between the analytical and the geometric significance of the absolute value of a complex number,
- derive and apply the rule for division of complex numbers
- calculate the reciprocal of a complex number,
- find complex solutions of equations.

4.4 Algebraic expressions, equations and inequalities

- recognise and solve linear equations,
- recognise equations which can be solved by factoring and solve them,
- effectively express unknowns from different equations from physics and chemistry,
- apply rules for transforming inequalities to equivalent inequalities and effectively solve them,
- recognise and solve linear inequalities.

4.5 Powers and roots

Content
Objectives

Candidates

- justify and apply the rules for computing with power functions with natural exponents,
- justify and apply the rules for computing with power functions with integer exponents and compare them to the rules for computing with power functions with natural exponents,
- explain the significance of notations a^{-1} and a^{-n},
- apply the rules for computing with square roots,
- solve quadratic equation of a form
$x^{2}=a, a>0, a \in \mathbb{R}$ by factoring and determining square roots,
- compare and explain solving of simple equations of a form $x^{n}=a, a \in \mathbb{R}, n \in \mathbb{N}$ in a set of real numbers by determining square roots and factoring,
- explain and use the relation $\sqrt{x^{2}}=|x|$,
- compute exact cube roots of real numbers by heart (i.e., without aid) and using a calculator,
- distinguish between various conditions for determination of existence of an nth root of a real number (with respect to the degree of root and the radicand),
- are adept at using a calculator for computing nth roots,
- transform the notation of an nth root into the notation of a power with rational exponents,
- make links and compare solving tasks with nth roots to solving with powers with rational exponents.

Content
Objectives

Candidates

Points, lines and circles in the plane
Distance, a line segment, segment spanning a line, a bisector, a ray, an angle
Types of angle and relationships between angles

Triangle, polygons
Famous points of a triangle
Isometries and congruence
Translation, reflection, rotation, orientation of a triangle

Orthogonal projection
Inscribed and central angle
Angle in a semicircle
Homothety, similarity
Theorems in a right-angled triangle
Parallelogram, rhombus, trapezium
Mathematical constructions
The sine and cosine rules
Parallel and perpendicular lines and planes in three dimensional space

Orthogonal projection of a line onto a plane

- understand concepts of elementary Euclidean geometry,
- develop perception of geometry and, through practice, learn the basic standards of the mathematical theory,
- are familiar with the definitions and apply the properties of geometric shapes,
- apply relationships between interior and exterior angles of a triangle as well as relationships between sides and angles in a triangle,
- apply the relationship between inscribed and central angles subtending the same arc,
- distinguish between congruent and similar triangles,
- apply theorems in a right-angled triangle,
- construct shapes by using a pair of compasses, a ruler and a triangle (optional),
- understand and apply relationship between sides and angles in an arbitrary triangle applying the sine and cosine rules,
- explore geometric problems using ICT,
- develop perception of relationships between points, lines and planes in space.

4.7 Geometric shapes and solids

Content

 formulaRadii of an inscribed and of a circumscribed circle in a triangle

Geometric solids: prism, cylinder, pyramid, cone and sphere

Surface area and volume of an upright prism, cylinder, pyramid, cone and sphere Geometric mathematical problems

Objectives

Candidates

- develop and improve perception of geometry,
- express quantities from formulas,
- estimate and critically evaluate the calculated values and pay attention to the units of measurement,
- apply acquired knowledge of plane geometry and solve problems related to the radius of an inscribed and of a circumscribed circle in a triangle,
- describe a geometry solid,
- apply acquired knowledge of trigonometric functions and geometry on models of geometry solids,
- solve geometric problems related to the surface area and the volume of a solid and estimate and critically evaluate the calculated results and the units of measurement,
- recognise a geometric problem, present it, determine which concepts, variables and relationships between them can be applied to solve it, solve the problem, present solutions and considers its implications,
- independently choose and apply appropriate strategies to solve geometric problems and link contents from plane geometry and space geometry in solving geometric problems,
- solve geometric problems using trigonometry.

4.8 Vectors in the plane and in space

Content

Definition of vectors

Addition and scalar multiplication (forces) graphic interpretation
Collinearity, coplanarity - graphic interpretation

Expressing vectors in a basis (writing a vector as a sum of components), Cartesian coordinate system - graphic interpretation
Linear combination of vectors
Basis in the plane and in space
Cartesian coordinate system in the plane and in space; position vector of a point
Notation of a vector in coordinates
Mathematical operations with vectors expressed in coordinates
Projection of a vector onto another vector
Dot product, an angle between two vectors and the magnitude of a vector
The relationship between the dot product and the cosine rule

Objectives

Candidates

- draw vectors, graphically add vectors and write a vector as a sum of two vectors,
- learn how to operate with vectors graphically and algebraically,
- evaluate collinearity and coplanarity of vectors,
- operate with vectors expressed in coordinates,
- calculate the angle between two vectors, the magnitude of a vector and orthogonal projection of a vector,
- discuss perpendicular and parallel vectors,
- understand perpendicularity in space.

4.9 Cartesian coordinate system in the plane

Content Objectives

Sets of points in the plane
Distance between two points in a coordinate plane

Candidates

Objectives

- use a Cartesian coordinate system in the plane,

Content	Objectives
Area of a triangle	$-\quad$read and draw a set of points in the coordinate plane in given conditions,
$-\quad$apply the relationship between ordered pairs of numbers and points in the plane,	
	$-\quad$calculate the distance between two points with given coordinates, calculate the area of a triangle with given coordinates of the verices and use the two formulas for solving mathematical problems.

4.10 Functions

Content	Objectives
	Candidates
Definition of a function	- understand and use the expression of a
Definition of a real function and properties of real functions of real variables (injection, surjection, bijection, increasing and decreasing functions, even and odd functions...)	function, - understand and use the expressions: domain and range of a function, injective, surjective and bijective functions, _ draw and analyse the graph of a function by
Function composition	using translations, reflections, stretches or
Inverse function	shrinks,
Transformations in the plane	- use translations, reflections, stretches or shrinks in solving problem-based tasks,
Limit of a function	
Special examples of limits	on simple examples, offer its definition and
Continuity of functions	draw the graph of an inverse function to the given function,
	- draw the graph of a piecewise-defined function,
	- explain the concept of the limit of a function at a given point with carefully chosen examples where functions are presented analytically or by their graphs or by the table of some of its values,
	- calculate the limit of a function at a given point and explain the significance of the calculated limit value,
	- explain the significance of the limit of a function at infinity,
	- distinguish between the limit of a function at infinity and the infinite limit of a function,
	- use limits in calculating asymptotes of functions,
	- recognise continuity of a function presented by its graph,

- find intervals where a given function is continuous;

4.10.1 Linear function

Definition and properties of a linear function, the graph of a linear function

Equations of a line in the plane
Angle between two lines
Linear equation
Linear inequality
System of linear equations
Modelling of simple examples from everyday life using a linear function

- define linear functions and draw their graphs,
- are familiar with and apply the significance of coefficients in a linear function,
- interpret and use the graph of a linear function in real-life situations,
- calculate the angle between two lines,
- are familiar with the significance of different forms of an equation of a line,
- recognise linear relationships between variables and write a linear equation from a given text,
- solve linear equations,
- express a problem as a system of linear equations and solve it,
- solve simple problems from everyday life and adequately interpret them,
- model simple problems from everyday life using a linear function;
- recognise a power-dependence relation and distinguish it from other types of dependency relations (inverse proportionality...),
- draw and analyse the graph of a power function using transformations,
- formulate and model reallife phenomena using a power function and critically choose them;
- treat a radical function as the inverse function of a power function;
- find a quadratic function from different data and draw its graph,
- interpret and use the graph of quadratic function in real-life situations,

Content
Vieta's formulas
Quadratic equation
Intersection of a parabola and a line
Intersection of two parabolas
Quadratic inequality

4.10.5 Exponential function

Definition, properties and the graph of an exponential function

Exponential equations
Exponential growth
Modelling real-life phenomena using an exponential function

4.10.6 Logarithmic function

Definition, properties and the graph of a logarithmic function

Logarithm and the rules of logarithmic computation
The common logarithm and the natural logarithm

Logarithmic equations

4.10.7 Polynomial function

Definition, properties and the graph of a polynomial function
Mathematical operations with polynomials
Euclidean division of polynomials theorem
Zeros of a polynomial function

Objectives

- solve quadratic equations and quadratic inequalities,
- translate a problem into an equation or an inequality and solve it,
- read mathematical texts, analyse and present them;
- recognise exponential dependence and distinguish it from other types of dependency relations,
- are familiar with and apply the properties of an exponential function,
- draw the graph of an exponential function,
- use translations, reflections, stretches and shrinks of the graph of an exponential function,
- compare power and exponential growth,
- recognise and solve exponential equations,
- find and model examples from everyday life using exponential functions;
- are familiar with and apply the properties of a logarithmic function,
- draw the graph of a logarithmic function,
- apply the relationship between exponential and logarithmic functions,
- use translations, reflections, stretches and shrinks of the graph of a logarithmic function,
- apply the rules of logarithmic computation,
- recognise the number e and the natural logarithm,
- recognise and solve logarithmic equations,
- compare exponential and logarithmic growth;
- recognise linear and quadratic functions as special examples of polynomial functions,
- compute with polynomials,
- apply the Euclidean division of polynomials theorem,

Content
The fundamental theorem of algebra and its corollaries
Synthetic division of polynomials
Analysis of the graph of a polynomial function
Polynomial equations
Polynomial inequalities

4.10.8 Rational function

Definition, properties and the graph of rational functions
Zeros, poles and asymptotes
Rational equations

4.10.9 Trigonometric function

Definitions and properties of trigonometric functions in a right-angled triangle
Definitions of trigonometric functions using a unit circle
Properties and graphs of trigonometric functions
Transformations of graphs of trigonometric functions

Addition formulas or angle sum and difference identities
Problem-based tasks
Finding values of circular functions
Trigonometric equations

Objectives

- apply the polynomial remainder theorem,
- use synthetic division for finding zeros of a polynomial function,
- apply the properties of polynomials in problem-based tasks,
- draw and interpret the graph of a polynomial function,
- solve polynomial equations and inequalities;
- are familiar with and apply the properties of rational functions,
- draw and interpret the graph of a rational function,
- solve rational equations;
- define and apply trigonometric functions in a right-angled triangle,
- derive values of trigonometric functions for $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$ angles,
- derive and apply relationships between trigonometric functions of the same angle,
- use a calculator,
- use values of trigonometric functions for random angles,
- are familiar with and apply the properties of trigonometric functions,
- are familiar with and explain concepts in different modes of representation (table of values, a graph, using a unit circle, analytically),
- apply transformations of graphs of trigonometric functions,
- draw and interpret graphs of trigonometric functions,
- apply addition formulas or apply angle sum and difference identities,
- apply trigonometric functions of double angles,
- use trigonometric functions of double angles in trigonometric equations and problembased tasks,
- calculate values of circular functions,
- solve trigonometric equations,
- interpret and analyse analytical solutions with regard to a given problem,
- apply trigonometric functions in real-life situations where an angle has to be calculated,
- solve simple, complex, authentic and original problems.

4.11 Conic sections

Candidates

- find examples of cone sections in nature,
- compare and use analytic and geometric definitions of a cone section,
- interpret a circle as a special example of an ellipse,
- analyse equations and graphically present circles and ellipses centred at the origin and not centred at the origin,
- analyse equations and graphically present hyperbolas and parabolas in vertex form,
- analyse different forms of the equations of parabolas,
- analytically and graphically determine intersections of a cone section and a line and determine intersections of cone sections centred at the origin,
- explain the implications of results in analytical treatment of intersections.

4.12 Sequences and series

Content Objectives

Candidates

Definition of a sequence

Properties of sequences (monotonous sequences, bounded sequences, convergent sequences...)

Arithmetic sequence
Geometric sequence
The sum of first n terms of an arithmetic sequence and the sum of n terms geometric sequence

- provide an example, induce, generalise and continue a sequence,
- find and write down the relationship between terms of a sequence,
- continue the sequence which is given by a recursion,
- determine and analyse the properties of sequences in different modes of representation (numerical, graphic and analytical representations...),

Content
Limit of a sequence
Series
Convergence of a geometric series
Percentage calculus
Annuity
Amortisation schedule

Objectives

- find examples of sequences given or represented in different manners,
- apply the properties of sequences in solving mathematical problems,
- predict and calculate the limit of a sequence,
- distinguish between a series and a sequence,
- distinguish between a convergent and a divergent series,
- compute the sum of n terms of a sequence,
- compute the sum of a geometric series,
- distinguish between simple and compound interest,
- distinguish between conform and relative interest rate,
- apply the equivalence of balance,
- find real-life examples of interest, predict expectations and make decisions based on simulative calculations,
- calculate annuity and make amortisation plan.

4.13 Differential calculus

Content

Objectives

Candidates

- describe concepts of differential calculus using graphic, numerical or analytical representations,
- calculate the value of a differential quotient,
- calculate the limit of a differential quotient,
- explain geometric significance of a derivative,
- derive elementary functions and composite functions,
- determine points from the graph of a function where the function is not differentiable,
- link the properties of a function and its derivative (predict properties, sketch a graph...),
- write down the equations of a tangent and a normal in a given point of a curve,
- calculate the angle between two curves,

Content	Objectives
	analyse a function with the derivative (explain extremes, determine intervals of increase and decrease) and draw a graph,
	$-\quad$ solve simple optimization problems.

4.14 Integral calculus

Content	Objectives
	Candidates
Indefinite integral and primitive function	- explain the relationship between the derivative of a function and the indefinite integral of a function,
Properties of indefinite integral	
Definite integral	- are familiar with the table of basic integrals and its link to the table of derivatives,
Properties of definite integral	
Relationship between definite and indefinite integrals	- apply the properties of an indefinite integral,
Use of definite integral (areas)	- are familiar with geometric significance of a definite integral,
	- apply the properties of a definite integral in solving mathematical problems,
	- apply the relationship between a definite and an indefinite integral in solving mathematical problems,
	- solve simple mathematical and real problems using integrals.

4.15 Combinatorics

Content	Objectives
	Candidates
Fundamental theorem of combinatorics,	$-\quad$ calculate $n!$,
tree diagrams	$-\quad$distinguish between individual combinatorial The rule of sum
Permutations	$-\quad$ calculate the value of a binomial symbol,
Permutations with repetition	$-\quad$ expand a binomial raised to a power.
Variations	
Variations with repetition	
Combinations	
Binomial theorem	
Pascal's triangle	

4.16 Probability

Content

Candidates

- formulate events and calculate with them,
- find all events for a trial,
- distinguish between subjective, empirical and mathematical probability,
- understand and link empirical and mathematical probability,
- are familiar with and can apply the definition of mathematical probability,
- from given probabilities of individual events calculate the probability of other events,
- use the sample space.

4.17 Statistics

Content

Basic statistical concepts
Types of data
Data collection
Management and structuring of data
Data representation (column chart, position chart, pie chart, histogram, scatter plot, line and curve charts, a box plot)

Arithmetic mean, median, mode
Variance, standard deviation, interquartile range
Statistical task

Objectives

Candidates

- distinguish between the studied properties (a variable), one element of the population, a value of a variable, a sample, a population,
- recognise the studied properties of a unit,
- distinguish between descriptive and qualitative data, cardinal and ordinal as well as numerical and quantitative data,
- collect, manage and structure data,
- select the appropriate diagram to represent data,
- read, make and interpret statistical diagrams,
- develop a critical attitude towards the interpretation of results,
- are familiar with and use different methods of summarising data,
- choose the appropriate method of summarising data with regard to the type of data,
- calculate, evaluate and interpret the average, the mode and the median as measures of central tendency of data,
- evaluate simple connections between variables in statistics,
- calculate, evaluate and interpret the variance, the standard deviation and the interquartile range as measures of spread
- apply knowledge on how to use data in a complex procedure of empirical research (choose a topic, specify the research question, collect, manage, structure and analyse data, show and interpret results).

Textbooks and learning tools approved by the Council of Experts of the Republic of Slovenia for General Education are listed in the Catalogue of Textbooks for Secondary Education and published on the National Education Institute Slovenia (Zavod Republike Slovenije za šolstvo) website www.zrss.si.

6.1 Mathematical symbols

Logic

$\wedge, \&$	conjunction
\vee	disjunction
\Rightarrow	implication
\Leftrightarrow	equivalence
$\neg A, \bar{A}$	negation of statement A
\forall	for each
\exists	there exists

Sets

ϵ	is an element of
\notin	is not an element of
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set of elements $x_{1}, x_{2} \ldots$
$\{x, \ldots\},\{x \mid \ldots\}$	the set of all x, so that...
$m(A),\|A\|$	the number of elements (i.e., power) of the set A
$\mathcal{P} A, \mathcal{P}(A)$	the power set of set A
$\varnothing,\{ \}$	the empty set
\mathcal{U}	a universal set (a universe)
A^{C}, A^{\prime}	the complement of set A
$\mathbb{N}^{\prime}=\{1,2,3, \ldots\}$	the set of positive integers
\mathbb{N}_{0}	the set of integers
\mathbb{Z}	the set of positive integers
\mathbb{Z}^{+}	the set of negative integers
\mathbb{Z}^{-}	the set of rational numbers
\mathbb{Q}	the set of positive rational numbers
\mathbb{Q}^{+}	the set of negative rational numbers
\mathbb{Q}^{-}	the set of real numbers
\mathbb{R}	the set of positive real numbers
\mathbb{R}^{+}	the set of non-negative real numbers
\mathbb{R}_{0}^{+}	the set of negative real numbers
\mathbb{R}^{-}	the set of complex numbers
\mathbb{C}	

\subset, \subseteq	is a subset of
$\not \subset, \nsubseteq$	is not a subset of
\cup	a union
\cap	an intersection
\times	a Cartesian product
$[a, b]$	a difference of sets
$[a, b)$	the closed interval $\{x \in \mathbb{R} ; a \leq x \leq b\}$
$(a, b]$	the interval $\{x \in \mathbb{R} ; a \leq x<b\}$
(a, b)	the interval $\{x \in \mathbb{R} ; a<x \leq b\}$
	the open interval $\{x \in \mathbb{R} ; a<x<b\}$

Relations and operations

(a, b)	the ordered pair
$=$	is equal to
\neq	is not equal to
$=, \approx$	is approximately equal to
$<$	is less than
\leq	is less than or equal to
$>$	is greater than
\geq	is greater than or equal to
+	plus
-	minus
,$- \times$	times
\therefore, \div	divide
$a \mid b$	divides b
$D(a, b), \operatorname{gcd}(a, b)$	the greatest common divisor of integers a and b
$v(a, b), \operatorname{lcm}(a, b)$	the least common multiple of integers a and b
\sum	the sum symbol
$\|a\|$	the absolute value of the integer a

Complex numbers
i
$\operatorname{Re} z$
Im z
$|z|$
\bar{z}, z^{*}
the imaginary unit the real part of the complex number z the imaginary part of the complex number z the absolute value of the complex number z the complex conjugate of the complex number z

Geometry. Vectors

$d(A, B)$	the distance between points A and B
$\|A B\|$	the length of the line segment $A B$
Δ	an angle
Δ	a triangle shape
\perp	is parallel to
\cong	is perpendicular to
\sim	is congruent to
$\overrightarrow{A B}, \vec{a}$	is similar to
$s \vec{a}$	the vector $\overrightarrow{A B}$, the vector \vec{a}
$\vec{a} \cdot \vec{b}$	the product of a vector \vec{a} by a number (a scalar) s
$\vec{i}, \vec{j}, \vec{k}$	vectors of standard orthogonal basis
$\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$	the vector with coordinates a_{1}, a_{2}, a_{3}
$\|\vec{a}\|$	the magnitude of vector \vec{a}
\vec{r}_{A}	the position vector of a point A
$A(x, y)$	the point A with coordinates x and y
$A(x, y, z)$	the point A with coordinates x, y and z
S, p	the area of a shape
V	the volume of a solid
P	the surface area of a solid

- Functions

$f: A \rightarrow B$	f is a transformation (function) which maps from A to B
$x \mapsto f(x)$	f transforms x into $f(x)$
D_{f}	the domain of function f
Z_{f}	the range of function f
f^{-1}	the inverse function of function f
$f \circ g$	the composition of functions f and g
$\lim _{x \rightarrow a} f(x)$	the limit value of function f as x approaches a
$\left(a_{n}\right),\left\{a_{n}\right\}$	the sequence given by a general term a_{n}
$\lim _{n \rightarrow \infty} a_{n}$	the limit of a sequence given by a general term a_{n}
$f^{\prime}, \frac{\mathrm{d} f}{\mathrm{~d} x}$	the (first) derivative of a function f
$\int f(x) \mathrm{d} x, \int f$	the indefinite integral of a function f

$$
\begin{array}{ll}
\int_{a}^{b} f(x) \mathrm{d} x & \text { the definite integral of a function } f \text { with respect from } \\
& a \text { to } b
\end{array}
$$

Combinatorics. Probability calculus. Statistics

P_{n}	the number of permutations of n elements withou repetition
$P_{n}^{m_{1}, m_{2}, \ldots, m_{k}}$	the number of permutations of n elements with repetition
n !	n factorial
V_{n}^{r}	the number of variations of n elements with repetition of the order r
${ }^{(p)} V_{n}^{r}$	the number of variations of n elements with repetition of the order r
$\binom{n}{r}$	the binomial coefficient (n choose r)
C_{n}^{r}	the number of combinations between n elements without repetition of the order r
G	a certain event
N	an impossible event
$E_{1}, E_{2}, E_{3}, \ldots$	elementary events
A^{\prime}, \bar{A}	the complementary event to event A
$A \cup B, A+B$	the sum of events A and B
$A \cap B, A \cdot B$	the product of events A and B
$A \backslash B, A-B$	the difference of events A and B
$A \subset B$	A is a subset of event B
$P(A)$	the probability of event A
$P(A / B)$	the probability of event A given B (conditional probability)
\bar{x}, μ	the arithmetic mean
σ^{2}	variance
σ	standard deviation

6.2 Formulas from the Formula Sheet

(Sum and difference of cubes) For any $a, b \in \mathbb{R}$ the following identities hold true $a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \mp a b+b^{2}\right)$.
(Euclidean and altitude theorem) A right-angled triangle has a hypotenuse c. The catheti are a and b. The altitude on the hypotenuse is v_{c} and the projections of the catheti a and b on the hypotenuse are a_{1} and b_{1} respectively. Then $a^{2}=c a_{1}, b^{2}=c b_{1}, v_{c}^{2}=a_{1} b_{1}$.
(Radii of the inscribed and circumscribed circle of a triangle) A triangle has sides a, b and c.
The semiperimeter is denoted by $s=\frac{a+b+c}{2}$. The area of the triangle is S. The radius of the inscribed circle is r and the radius of the circumscribed circle is R. Then $r=\frac{S}{s}$ and $R=\frac{a b c}{4 S}$.
(Heron's formula) A triangle has sides a, b and c. The semiperimeter is denoted by $s=\frac{a+b+c}{2}$. The area of the triangle is S. Then $S=\sqrt{s(s-a)(s-b)(s-c)}$.
(Area of a triangle) Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be points on a plane. The area S of a triangle with vertices A, B and C is $S=\frac{1}{2}\left|\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right)\right|$.
(Sphere) The surface area P and the volume V of a sphere with radius r are $P=4 \pi r^{2}, V=\frac{4 \pi r^{3}}{3}$. (Trigonometric addition formulas) For any $x, y \in \mathbb{R}$ the following identities hold true $\sin (x \pm y)=\boldsymbol{\operatorname { s i n }} x \cos y \pm \cos x \sin y, \quad \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$.
For any $x, y \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+\pi \cdot k ; k \in \mathbb{Z}\right\}$, such that $x+y \neq \frac{\pi}{2}+\pi \cdot k, k \in \mathbb{Z}$ and $\tan x \tan y \neq-1$, the following identity holds true $\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$.
(Trigonometric half angle formulas)
For any $x \in \mathbb{R}$ the following identities hold true $\sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}, \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}$.
For any $x \in \mathbb{R} \backslash\{\pi+\pi \cdot 2 k ; k \in \mathbb{Z}\}$ the following identity holds true $\tan \frac{x}{2}=\frac{\sin x}{1+\cos x}$.
(Ellipse) Let a and $b(a>b)$ be semiaxes of an ellipse on a plane. Linear eccentricity of an ellipse is denoted by e and numerical eccentricity of an ellipse is denoted by ε. Then $e^{2}=a^{2}-b^{2}, \varepsilon=\frac{e}{a}$.
(Hyperbola) Let a be a real semiaxis and let b be an imaginary semiaxis of a hyperbola on a plane. Linear eccentricity of a hyperbola is denoted by e and numerical eccentricity of a hyperbola is denoted by ε. Then $e^{2}=a^{2}+b^{2}, \varepsilon=\frac{e}{a}$.
(Parabola) A parabola on a plane with an equation $y^{2}=2 p x$ has a focus in point $G\left(\frac{p}{2}, 0\right)$. The equation of the directrix of a parabola is $x=-\frac{p}{2}$.
(Arithmetic sequence) The sum of the first n terms of an arithmetic sequence $\left(a_{n}\right)$ is $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$.
(Geometric sequence) The sum of the first n terms of a geometric sequence $\left(a_{n}\right)$ with a common ratio

$$
q \in \mathbb{R} \text { is } S_{n}=\frac{a_{1}\left(q^{n}-1\right)}{q-1} \text { if } q \neq 1 \text {, and } S_{n}=n a_{1} \text { if } q=1
$$

(Limits) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ and $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

[^0]: * Učni načrt. Matematika [Elektronski vir]: gimnazija: splošna, klasična in strokovna gimnazija: obvezni predmet in matura (560 ur)/predmetna komisija Amalija Žakelj ... [et al.]. - Ljubljana: Ministrstvo za šolstvo in šport: Zavod RS za šolstvo, 2008. http://portal.mss.edus.si/msswww/programi2012/programi/gimnazija/ucni_nacrti.htm

[^1]: ${ }^{+}$A pair of compasses, a ruler and a triangle (optional).

 * A calculator is an electronic device used for performing basic arithmetic operations and should not support:
 - communication with the environment - the 'outside world',
 - storing data from the environment, or the 'outside world',
 - storing previously uploaded data,
 - computing with symbols,
 - programming new functions,
 - drawing graphs of functions.

