

Cource	ucı	canu	iuato.

Državni izpitni center

SESSIONE AUTUNNALE

Livello di base MATEMATICA Prova d'esame 1

Martedì, 26 agosto 2008 / 120 minuti

Al candidato sono consentiti l'uso della penna stilografica o della penna a sfera, della matita, della gomma, di una calcolatrice tascabile priva di interfaccia grafica e possibilità di calcolo con simboli, nonché del compasso, di due squadrette e di un righello.

Al candidato vengono consegnati due fogli per la minuta e due schede di valutazione.

MATURITÀ GENERALE

INDICAZIONI PER I CANDIDATI

Leggete con attenzione le seguenti indicazioni.

Non aprite la prova d'esame e non iniziate a svolgerla prima del via dell'insegnante preposto.

Incollate o scrivete il vostro numero di codice negli spazi appositi su questa pagina in alto a destra e sulle due schede di valutazione. Scrivete il vostro numero di codice anche sui fogli della minuta.

La prova d'esame si compone di 12 quesiti, risolvendo correttamente i quali potete conseguire fino a un massimo di 80 punti. Il punteggio conseguibile in ciascun quesito viene di volta in volta espressamente indicato. Per risolvere i quesiti potete fare uso dell'elenco di formule che trovate a pagina 2.

Scrivete le vostre risposte negli spazi appositamente previsti **all'interno della prova** utilizzando la penna stilografica o la penna a sfera. Disegnate a matita i grafici delle funzioni. In caso di errore, tracciate un segno sulla risposta scorretta e scrivete accanto ad essa quella corretta. Alle risposte e alle correzioni scritte in modo illeggibile verrà assegnato il punteggio di zero (0). Utilizzate i fogli della minuta solo per l'impostazione delle soluzioni, in quanto essi non verranno sottoposti a valutazione.

Le risposte devono riportare tutto il procedimento attraverso il quale si giunge alla soluzione, con i calcoli intermedi e le vostre deduzioni. Nel caso in cui un quesito sia stato risolto in più modi, deve essere indicata con chiarezza la soluzione da valutare.

Abbiate fiducia in voi stessi e nelle vostre capacità. Vi auguriamo buon lavoro.

La prova si compone di 16 pagine, di cui 2 bianche.

Formule

- $a^{2n+1} + b^{2n+1} = (a+b)(a^{2n} a^{2n-1}b + a^{2n-2}b^2 \dots + a^2b^{2n-2} ab^{2n-1} + b^{2n})$
- Teoremi di Euclide e dell'altezza di un triangolo rettangolo: $a^2=ca_1$, $b^2=cb_1$, $h_c^2=a_1b_1$
- Raggi delle circonferenze circoscritta ed inscritta ad un triangolo: $R = \frac{abc}{4A}$, $r = \frac{A}{p}$, $p = \frac{a+b+c}{2}$
- Formule di bisezione:

$$\sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}} ; \cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}} ; \tan \frac{x}{2} = \frac{\sin x}{1 + \cos x}$$

• Funzioni trigonometriche relative al triplo di un angolo: $\operatorname{sen} 3x = 3 \operatorname{sen} x - 4 \operatorname{sen}^3 x$, $\cos 3x = 4 \cos^3 x - 3 \cos x$

• Teoremi di addizione:

$$sen(x + y) = sen x cos y + cos x sen y$$
$$cos(x + y) = cos x cos y - sen x sen y$$
$$tan(x + y) = \frac{tan x + tan y}{1 - tan x tan y}$$

• Formule di prostaferesi o di fattorizzazione:

$$\operatorname{sen} x + \operatorname{sen} y = 2 \operatorname{sen} \frac{x + y}{2} \cos \frac{x - y}{2}, \ \operatorname{sen} x - \operatorname{sen} y = 2 \cos \frac{x + y}{2} \operatorname{sen} \frac{x - y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}, \cos x - \cos y = -2 \operatorname{sen} \frac{x + y}{2} \operatorname{sen} \frac{x - y}{2}$$

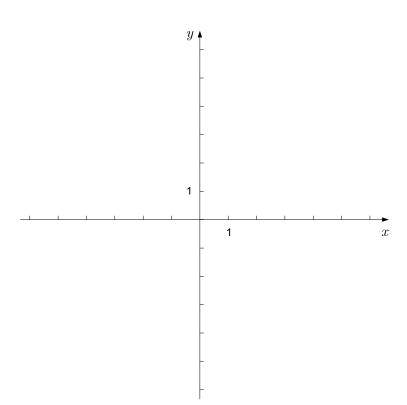
$$\tan x \pm \tan y = \frac{\operatorname{sen} (x \pm y)}{\cos x \cos y}, \cot x \pm \cot y = \frac{\operatorname{sen} (y \pm x)}{\operatorname{sen} x \operatorname{sen} y}$$

• Formule di Werner o della scomposizione del prodotto:

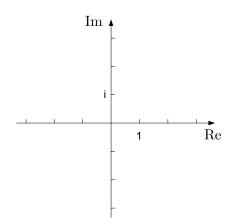
• Distanza del punto $T_0(x_0, y_0)$ dalla retta ax + by - c = 0:

$$d\left(T_{0},p\right) = \left|\frac{ax_{0} + by_{0} - c}{\sqrt{a^{2} + b^{2}}}\right|$$

$$A = \frac{1}{2} \left[(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) \right]$$


- Ellisse: $e^2=a^2-b^2$, $\varepsilon=\frac{e}{a}$; a>b
- Iperbole: $e^2=a^2+b^2,\, \varepsilon=\frac{e}{a}\,;\, a\,$ è il semiasse reale.
- Parabola: $y^2 = 2px$, fuoco $F\left(\frac{p}{2}, 0\right)$
- Integrali:

$$\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

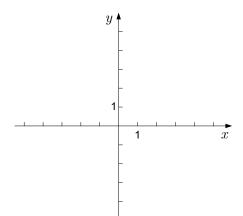

01.	Scrivete i primi dieci termini della successione aritmetica il cui primo termine è 2 e la cui ragione è 3. Determinate in percentuale quanti di essi sono divisibili per 4 e quanti di essi sono numeri primi.	
	(6 punti)	
	I primi dieci termini della successione aritmetica sono:	
	<u>2</u> ,,,,,,,	
	Percentuale dei numeri divisibili per 4:	
	Percentuale dei numeri primi:	

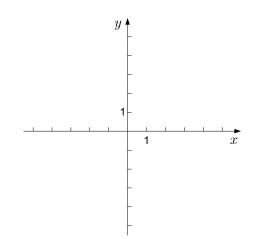
4

02. Tracciate le rette 3x - y - 3 = 0 e 2x + y + 5 = 0 e calcolate la loro intersezione.

03. Risolvete l'equazione $x^2 - 4x + 5 = 0$ e riportate le risoluzioni nel piano complesso.

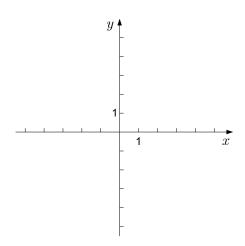
04. Scrivete l'equazione della retta tangente e l'equazione della retta perpendicolare al grafico della funzione $f(x) = x^3 - 3x$ nel punto $A\left(-2, y_0\right)$.

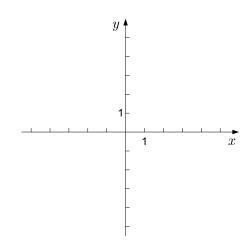

05. È data la funzione razionale $f(x)=\frac{1-2x}{x+3}$. Determinatene il campo di esistenza, lo zero, le equazioni dell'asintoto verticale e di quello orizzontale e l'intersezione del grafico della funzione con l'asse delle ordinate. Tracciate il grafico della funzione.


06. Scegliamo a caso tre regali tra cinque libri, tre giocattoli e due sacchetti di caramelle. Calcolate la probabilità dell'evento, che i tre regali siano un libro, un giocattolo e un sacchetto di caramelle.

07. Disegnate in ciascun sistema coordinato gli insiemi dei punti che soddisfano alle condizioni di volta in volta specificate:

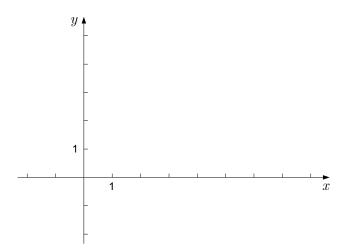
a)
$$x + y = 4$$


b)
$$x^2 + y = 4$$

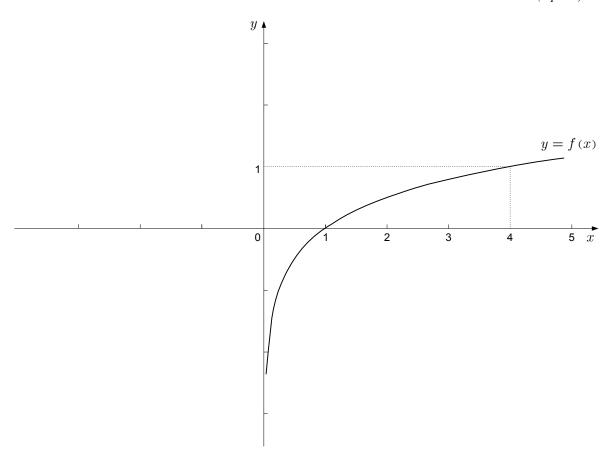


c)
$$x^2 + y^2 = 4$$

d)
$$x^2 - y^2 = 4$$



08. Risolvete l'equazione $sen(\pi - x) + cos^2 x = 1$.


(8 punti)

09. La base di un prisma retto è un rombo le cui diagonali misurano $e=18~{\rm cm}~{\rm e}~f=24~{\rm cm}$. La diagonale di una faccia laterale misura $39~{\rm cm}$. Calcolate l'area della superficie totale del prisma.

10. I punti A(0,0), B(7,0), C(3,3) e D(0,3) sono i vertici di un trapezio. Tracciate il trapezio nel sistema coordinato dato. Calcolate la lunghezza del lato b=|BC|, il prodotto scalare $\overrightarrow{AB} \cdot \overrightarrow{AC}$ e l'ampiezza dell'angolo $\beta = \sphericalangle ABC$. Calcolate con esattezza la lunghezza del lato e il prodotto scalare, ed esprimete l'ampiezza dell'angolo β al primo di grado.

11. Il grafico della funzione logaritmica $f(x) = \log_a x$ è disegnato nel sistema coordinato dato. Scrivete la base del logaritmo. Nello stesso sistema coordinato tracciate anche il grafico delle funzioni $g(x) = \log_a (x+2)$ e $h(x) = \log_a x - 1$. Indicate i grafici in modo adeguato.

12. Calcolate il numero reale positivo a tale che l'area della figura delimitata dal grafico della funzione $f(x) = a \operatorname{sen} x$ e l'asse x nell'intervallo $\left[0, \frac{\pi}{3}\right]$ sia uguale a 2.

Pagina bianca

Pagina bianca