

Coarce	aeı	candidato

Državni izpitni center

SESSIONE PRIMAVERILE

CHIMICA Prova d'esame 1

Giovedì, 14 giugno 2018 / 90 minuti

Materiali e sussidi consentiti:
Al candidato sono consentiti l'uso di penna stilografica o a sfera, matita HB o B, gomma, temperamatite e calcolatrice.
Al candidato viene consegnato un foglio per le risposte.
Nella prova è inserito un allegato staccabile contenente il sistema periodico.

MATURITÀ GENERALE

INDICAZIONI PER I CANDIDATI

Leggete con attenzione le seguenti indicazioni.

Non aprite la prova d'esame e non iniziate a svolgerla prima del via dell'insegnante preposto.

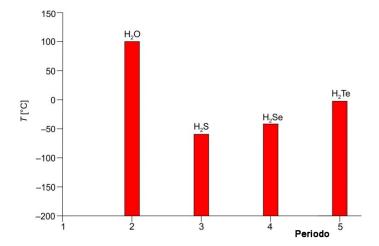
Incollate o scrivete il vostro numero di codice negli spazi appositi su guesta pagina in alto a destra e sul foglio per le risposte.

La prova d'esame si compone di 40 quesiti a scelta multipla. È prevista l'assegnazione di 1 punto per ciascuna risposta esatta. Nei calcoli fate uso delle masse atomiche relative degli elementi indicate nel sistema periodico in allegato.

Scrivete le vostre risposte **all'interno della prova** cerchiando con la penna stilografica o la penna a sfera la soluzione da voi scelta; ricordate che tutti i quesiti hanno soltanto **una** soluzione esatta. Compilate anche il **foglio per le risposte**. Ai quesiti per i quali saranno state scelte più risposte o nei casi di correzioni non comprensibili verranno assegnati 0 punti.

Abbiate fiducia in voi stessi e nelle vostre capacità. Vi auguriamo buon lavoro.

Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia											
Scientia Est Potentia	Scientia Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia	Scientia	Est	Potentia


		_			7			က			4	_		- 2			9			7	
18	2	He	4,003	10	Z	20,18	18	Ą	39,95	36	¥	83,80	54	Xe	131,3	98	Æ	(222)	118	0	(294)
		₹	11	6	L	19,00	17	5	35,45	35	В	79,90	53	_	126,9	<u> </u>	At	(210)	111	E	(294)
		>	16	8	0	16,00	16	Ø	32,06	34	Se	78,96	52	Te	127,6	84	Po	(508)	116	^	(293)
		>	15	7	Z	14,01	15	_	30,97	33	As	74,92	51	Sb	121,8	83	æ	209,0	115	S M	(588)
	•	≥	41	9	ပ	12,01	14	Si	28,09	32	Ge	72,63	20	Sn	118,7	82	Pb	202,5	114	正	(588)
		=	13	2	m	10,81	13	₹	26,98	31	Ga	69,72	49	<u>=</u>	114,8	81	F	204,4	113	ž	(284)
	•						•		12	30	Z	65,38	48	B	112,4	80	H	200,6	112	5	(282)
									7	29	J C	63,55	47	Ag	107,9	6/	Au	197,0	111	Rg	(280)
	•								19	28	Z	58,69	46	P	106,4	82	T	195,1	110	Ds	(281)
	-								6	27	ပိ	58,93	45	몺	102,9	11	<u>_</u>	192,2	109	Ĭ	(276)
	_	I	1,008						80	56	Fe	52,85	44	Ru	101,1	9/	0 8	190,2	108	Hs	(277)
									7	25	2 2	54,94	43	J c	(86)	22	Re	186,2	107	B	(270)
									9	24	င်	52,00	42	№	96'36	74	}	183,8	106	Sg	(271)
									2	23	>	50,94	41	<u>Q</u>	92,91	73	L	180,9	105	9	(268)
co DEG									4	22	F	47,87	40	Z	91,22	72	Ĭ	178,5	104	Ŗ	(592)
SISTEMA PERIODICO DEGLI ELEMENTI									က	21	Sc	44,96	39	>	88,91	25	La	138,9	89	Ac	(227)
EMA PI		=	7	4	Be	9,012	12	M	24,31	20	Ça	40,08	38	Sr	87,62	26	Ba	137,3	88	Ra	(226)
SIS		_	1	3	5	6,941	7	N	22,99	19	¥	39,10	37	Z P	85,47	22	Cs	132,9	87	Ţ	(223)
					7			က			4			2			9			7	

	58	59	09	61	62	63	64	99	99	29	89	69	70	71
Lantanidi	ç	P	Ž	Б	Sm	Ш	P9	P	D	£	Щ	E	Υp	3
	140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
	06	91	92	93	94	95	96	97	86	66	100	101	102	103
Attinidi	£	Pa	-	Ž	Pa	Am	E	B¥	ರ	S	E	Σ	Š	۲
	232,0	231,0	238,0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
	[

 $N_A = 6.02 \cdot 10^{23} \text{ mor}^{-1}$ $R = 8.31 \text{ kPa L mor}^{-1} \text{ K}^{-1}$ $F = 96500 \text{ A s mol}^{-1}$

- In una popolazione dei ratti, gli animali hanno la stessa massa di 350 g. Tutti i ratti hanno ingerito 200 mg di una sostanza tossica. È perita la metà dei ratti. Qual è il valore della mediana della dose letale di questa sostanza tossica?
 - A $LD_{50} = 0.57$ mg/kg di massa corporea (ratti, orale).
 - B LD₅₀ = 200 mg/kg di massa corporea (ratti, orale).
 - C $LD_{50} = 571 \text{ mg/kg di massa corporea (ratti, orale)}$.
 - D LD_{50} = 1750 mg/kg di massa corporea (ratti, orale).
- 2. Nell'atomo di un qualsiasi elemento è presente lo stesso numero di
 - A protoni e neutroni.
 - B protoni ed elettroni.
 - C neutroni ed elettroni.
 - D protoni, neutroni ed elettroni.
- 3. La configurazione elettronica dell'atomo di un elemento è $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$ $3d^{10}$ $4p^4$. Quale delle seguenti affermazioni è corretta?
 - A L'elemento si trova nel 14° gruppo del sistema periodico (IV. gruppo secondo la vecchia designazione).
 - B L'atomo di questo elemento ha quattro elettroni spaiati.
 - C L'atomo di questo elemento ha quattro elettroni nel livello esterno.
 - D Gli elettroni di questo elemento si trovano in 18 orbitali.
- 4. Quale proprietà fisica degli elementi diminuisce, procedendo nel periodo da sinistra verso destra?
 - A II raggio atomico.
 - B L'elettronegatività.
 - C L'energia di prima ionizzazione.
 - D La temperatura di ebollizione.
- 5. Qual è la formula corretta del composto tra litio e azoto?
 - A LiN
 - B Li₃N
 - C Li₂N₃
 - D Li₃N₃

- 6. In quale tra le seguenti molecole l'angolo tra i legami è di 120°?
 - A Ammoniaca.
 - B Metano.
 - C Acqua.
 - D Trifluoruro di boro.
- 7. Il grafico sottostante rappresenta le temperature di ebollizione degli idruri dello stesso gruppo del sistema periodico, a pressione atmosferica. Qual è l'affermazione corretta?

- A L'acqua ha la temperatura di ebollizione maggiore perché ha la massa molare minore.
- B L'acqua ha la temperatura di ebollizione maggiore a causa dei legami forti tra le molecole.
- C A temperatura ambiente le sostanze si trovano allo stato di aggregazione liquido.
- D Le temperature di ebollizione degli idruri di questo gruppo aumentano con l'aumentare della massa molare.
- 8. In laboratorio abbiamo analizzato una sostanza bianca sconosciuta. In base ai risultati delle analisi, stabilite a quale tipo di cristallo appartiene la sostanza analizzata.

Temperatura di fusione	Solubilità in acqua	Conducibilità elettrica della sostanza solida	Conducibilità elettrica della soluzione
801 °C	SÌ	NO	SÌ

- A Cristallo ionico.
- B Cristallo covalente.
- C Cristallo metallico.
- D Cristallo molecolare.

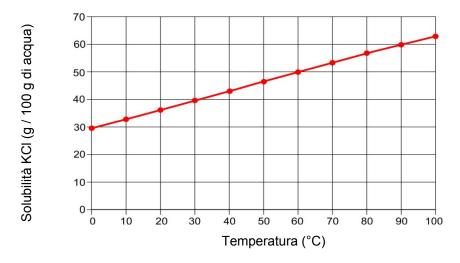
- 9. In quattro recipienti separati dello stesso volume, alla temperatura di 20 °C, si trovano i seguenti gas: azoto, ossigeno, metano e diossido di carbonio. Le masse dei gas sono uguali. In quale recipiente abbiamo la pressione maggiore?
 - A Nel recipiente con l'azoto.
 - B Nel recipiente con l'ossigeno.
 - C Nel recipiente con il metano.
 - D Nel recipiente con il diossido di carbonio.
- 10. Stabilite i valori di x, y e z, tali che la sottostante reazione sia bilanciata.

$$C_xH_y(OH)_z + 6O_2 \rightarrow 5CO_2 + 5H_2O$$

A
$$x = 5, y = 8, z = 2$$

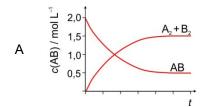
B
$$x = 5, y = 10, z = 5$$

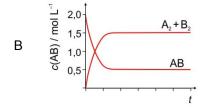
C
$$x = 5, y = 7, z = 3$$

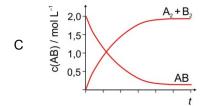

D
$$x = 10, y = 10, z = 1$$

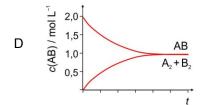
11. Quale tra le seguenti reazioni è esotermica?

C
$$CuSO_4 \cdot 5H_2O \rightarrow CuSO_4 + 5H_2O$$


D
$$2HgO \rightarrow 2Hg + O_2$$


12. A quale temperatura la parte di massa del soluto, nella soluzione satura è uguale a 0,33?




- A 55 °C
- B 60 °C
- C 65 °C
- D 70 °C

- 13. Quale delle seguenti affermazioni sulle soluzioni è corretta?
 - A La solubilizzazione è sempre un processo endotermico.
 - B Tra le molecole sciolte dell'ossigeno e le molecole dell'acqua si instaurano forze di induzione.
 - C I gas si sciolgono meglio ad alte temperature.
 - D La soluzione fisiologica, una soluzione acquosa di cloruro di sodio allo 0,9 per cento, è un miscuglio eterogeneo.
- 14. I quattro grafici sottostanti rappresentano il cambiamento della concentrazione dei reagenti AB e dei prodotti A2 e B2 in dipendenza dal tempo. L'andamento della reazione si può descrivere con la reazione: 2AB(g) A2(g) + B2(g). Dal valore della concentrazione iniziale dei reagenti 2,0 mol L-1, abbiamo ottenuto all'equilibrio 1,5 mol L-1 di prodotti A2 e B2. Quale dei seguenti grafici rappresenta questa reazione, effettuata con l'utilizzo di un catalizzatore?

15. Ad alte temperature, le molecole del cloro si scindono in atomi di cloro. Qual è il valore della concentrazione all'equilibrio delle molecole del cloro alla temperatura di 3000 K, se la concentrazione all'equilibrio del cloro atomico è 0,0200 mol L⁻¹?

$$Cl_2(g) \rightleftharpoons 2Cl(g)$$
 $K_{eq} = 0,550$

- A 7,27·10⁻⁴ mol L⁻¹
- B 0,0110 mol L⁻¹
- C 0,0360 mol L⁻¹
- D 27,5 mol L⁻¹

- 16. In quale dei seguenti casi l'aumento del volume del recipiente provoca la formazione di più prodotti?
 - A $2NO_2(g) \rightleftharpoons N_2O_4(g)$
 - B $2NO(g) + H_2(g) \implies H_2O(g) + N_2(g)$
 - C $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$
 - D $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$
- 17. Quale dei seguenti composti ha la costante acida Ka minore?
 - A HCIO₄
 - B HNO₂
 - C HCI
 - D HI
- 18. In una soluzione di analisi abbiamo aggiunto una goccia d'indicatore metilarancio. La soluzione si è colorata di rosso. Quale delle seguenti affermazioni sulla soluzione è corretta?
 - A Nella soluzione la concentrazione degli ioni ossonio è minore di 10⁻⁷ mol L⁻¹.
 - B Se alla soluzione aggiungiamo acqua, il valore del pH della soluzione si abbassa.
 - C Se alla soluzione aggiungiamo acqua, la concentrazione degli ioni idrossido nella soluzione aumenta.
 - D Il prodotto delle concentrazioni degli ioni ossonio e idrossido in questa soluzione è minore di 10⁻¹⁴.
- 19. In una beuta, contenente una soluzione di acido solforico H₂SO₄ di concentrazione sconosciuta, aggiungiamo una goccia di fenolftaleina. Nella buretta abbiamo una soluzione di idrossido di sodio a concentrazione 0,120 mol L⁻¹. Per la neutralizzazione completa consumiamo 20,0 mL di soluzione di idrossido di sodio. Quale delle seguenti affermazioni sulla titolazione è corretta?
 - A Nel punto equivalente il pH = 0.
 - B Nel punto equivalente il colore della soluzione nella beuta vira da viola a incolore.
 - C Prima della titolazione abbiamo nella beuta 0,00240 moli di acido solforico.
 - D Nel punto equivalente abbiamo una maggiore quantità di sostanza degli ioni sodio rispetto alla quantità di sostanza degli ioni solfato.
- 20. Le soluzioni di tre sostanze hanno la stessa concentrazione molare. Scegliete la disposizione a pH crescente delle soluzioni.
 - A NH₄NO₃ < NaNO₃ < NaCH₃COO
 - B NaNO₃ < NaCH₃COO < NH₄NO₃
 - C NH₄NO₃ < NaCH₃COO < NaNO₃
 - D NaCH₃COO < NaNO₃ < NH₄NO₃

21. È data la sottostante scala redox. Quale affermazione è corretta?

Scala redox: Na⁺/Na, Mg²⁺/Mg, Al³⁺/Al, Zn²⁺/Zn, Ni²⁺/Ni, Pb²⁺/Pb, H⁺/H₂, Cu²⁺/Cu, Ag⁺/Ag

- A Il sodio è un ossidante migliore dell'alluminio.
- B Il rame può essere sciolto in una soluzione di acido cloridrico.
- C Lo zinco reagisce con una soluzione di Cu(NO₃)₂.
- D L'alluminio può ossidare gli ioni di argento.
- 22. Qual è la massa del rame, che possiamo teoricamente ottenere da una soluzione di ioni rame(2+) se effettuiamo l'elettrolisi per un'ora con un'intensità di corrente di 4,00 A?
 - A 1,19 g
 - B 2,37 g
 - C 4,00 g
 - D 4,74 g
- 23. Qual è l'affermazione corretta per lo ione di coordinazione [Mo(CN)₈]⁴⁻?
 - A I ligandi sono disposti in forma ottaedrica attorno allo ione centrale.
 - B II numero di ossidazione del molibdeno è +8.
 - C I ligandi sono gli ioni cianuro.
 - D Il numero di coordinazione del molibdeno è 4-.
- 24. Quale affermazione sugli alogeni e i loro composti è corretta?
 - A II fluoro è il riducente più forte tra tutti gli alogeni.
 - B II sale da cucina viene iodato aggiungendo iodio elementare al cloruro di sodio.
 - C II cloro è un gas ottenuto industrialmente con la scissione termica del cloruro di idrogeno.
 - D Durante lo scioglimento del cloruro di idrogeno gassoso nell'acqua, si forma una soluzione acida.
- 25. Quale delle seguenti affermazioni è valida per le sostanze inorganiche?
 - A L'ammoniaca si scioglie bene nell'acqua perché è una base forte.
 - B Al terreno si aggiungono concimi artificiali, che contengono composti degli elementi azoto, fluoro e calcio. Questi tre elementi sono necessari in maggiore quantità per lo sviluppo e la crescita delle piante.
 - C Le marmitte catalitiche delle automobili contengono acido solforico concentrato H₂SO₄ che è una sostanza igroscopica.
 - D Nell'ottenimento dell'alluminio con l'elettrolisi dall'ossido di alluminio fuso si consuma più energia rispetto a quella necessaria per il riciclo dell'alluminio di scarto.

26. Scegli l'affermazione corretta per il gas nervino a uso bellico noto con il nome di sarin.

- A Nella molecola di sarin non ci sono atomi di idrogeno.
- B Nella molecola di sarin ci sono tre atomi di carbonio ibridi- sp^3 e un atomo di carbonio ibrido- sp^2 .
- C Nella molecola di sarin tutti gli atomi di carbonio sono ibridi- sp^3 .
- D Nella molecola di sarin tutti gli atomi di carbonio sono ibridi- sp.
- 27. Quale dei seguenti composti ha due isomeri geometrici?
 - A 1,1-dibromo-2,2-dicloroetene.
 - B 3-etiles-3-ene.
 - C Ciclopentene.
 - D But-2-ene.
- 28. Qual è il simbolo corretto per il radicale etilico?
 - A ·CH₂-CH₃
 - B [†]CH₃
 - C T:CH₂-CH₃
 - D ·CH₃
- 29. Qual è l'affermazione corretta per gli idrocarburi saturi?
 - A Gli alcani a catena lunga hanno una temperatura di ebollizione maggiore a causa della maggiore possibilità di formare legami a idrogeno tra le molecole.
 - B Per i cicloalcani è caratteristica la reazione di sostituzione elettrofila con il cloro, alla quale il composto AlCl₃ partecipa come catalizzatore.
 - C Gli idrocarburi aciclici saturi hanno la formula generale C_nH_{2n+2} , gli idrocarburi monociclici saturi invece C_nH_{2n} .
 - D Gli atomi di carbonio negli idrocarburi saturi sono ibridi- sp^2 .

30. Qual è l'affermazione corretta per il seguente composto?

- A Il composto è ben solubile in acqua.
- B Durante l'idrogenazione catalitica di 1 mole di composto con 3 moli di idrogeno otteniamo un idrocarburo saturo.
- C In uno dei gruppi laterali i doppi legami presentano una configurazione -cis.
- D Per il composto sono caratteristiche le reazioni di addizione elettrofila.

31. Quale schema di reazione rappresenta l'alchilazione del benzene?

$$A \qquad \qquad AlBr_3 \qquad \qquad Al$$

$$\begin{array}{c|c} & CH_2CH_3 \\ \hline & CH_3CH_2Br \\ \hline & AlBr_3 \\ \hline \end{array}$$

32. Quale composto è classificato tra i bromuri alchilici terziari?

Br

- 33. Il fenolo e il metossibenzene hanno diverse temperature di ebollizione e diversa solubilità in acqua. Quale delle seguenti affermazioni è corretta?
 - A II metossibenzene ha la temperatura di ebollizione maggiore a causa della maggiore massa molare.
 - B Ambedue i composti contengono l'anello aromatico, perciò sono completamente insolubili in acqua.
 - C Le molecole del fenolo formano legami a idrogeno, perciò il fenolo ha una temperatura di ebollizione più alta e una maggiore solubilità in acqua del metossibenzene.
 - D A causa del gruppo metossi, il metossibenzene si scioglie bene nell'acqua, in modo simile al metanolo.
- 34. Il quale coppia di composti tutte e due gli alcoli si ossidano nell'acido? Per l'ossidazione utilizziamo una soluzione acida di dicromato di potassio K₂Cr₂O₇.

35. Che cosa si forma nella seguente reazione?

36. Quale affermazione *non* è corretta per il seguente composto?

- A II composto forma un precipitato con la 2,4-dinitrofenilidrazina.
- B II composto reagisce con i reagenti di Fehling e Tollens.
- C Con il reagente LiAlH₄ possiamo ridurre ambedue i gruppi funzionali contenenti ossigeno.
- D Nella reazione con il composto NaCN in ambiente acido avviene la reazione di addizione del cianuro di idrogeno.
- 37. Quale delle seguenti affermazioni è corretta per il saccarosio (zucchero da tavola)?

- A II saccarosio è un monosaccaride di base, di cui sono composti tutti i disaccaridi e i polisaccaridi.
- B II miscuglio di polveri fini di D-glucosio e D-fruttosio in rapporto 1:1 viene chiamato saccarosio o zucchero da tavola.
- C Il saccarosio è un disaccaride e non reagisce con il reattivo di Tollens.
- D Durante il riscaldamento del saccarosio si formano legami glicosidici, creando di conseguenza la cellulosa.
- 38. In quale sequenza sono elencate sostanze che contengono soprattutto lipidi saponificabili?
 - A Cera, olio di mais, steroidi.
 - B Colesterolo, grasso di maiale, olio di zucca.
 - C Testosterone, progesterone, colesterolo.
 - D Olio di oliva, cera, burro di cocco.

39. Quale tra le parti di struttura contiene il gruppo funzionale delle ammidi (il legame peptidico)?

40. In quale esempio avviene una poliaddizione?

- A $HO-CH_2-CH_2-COOH \rightarrow$
- B $CH_2=CH-CI \rightarrow$
- $C \hspace{0.5cm} \mathsf{CH_3-CH_2-NH_2} + \mathsf{CH_3-CH_2-CH_2-COOH} \rightarrow$
- D HOOC- CH_2 - CH_2 - $COOH + HO-CH_2$ - CH_2 - $OH \rightarrow$

